1.本发明涉及共享电池技术领域,尤其涉及一种光储充备的运行管理系统。
背景技术:
2.目前国内新建和改建建筑设计和电动汽车充电桩和充电站,要求结合光储功能,优化设计特级负荷和光储充电站的应急供电,在市电中断后,造成特级负荷发生消防安全事故无电可用,同时导致充电站基础设施,出现停车管理系统瘫痪,车辆无法正常出入的情况,现有的光储充一体式充电站存在以下问题:
3.1、功能较为单一,仅能提供充电服务,当出现电力系统故障时,无法获得有效的用电保障,会出现停车场内基础设施无法投入使用的情况,影响停车场的正常运行管理工作;
4.2、庞大系统内的各组件均处于24小时工作状态,而停车场在大部分时间没有车辆充电,一直处于工作状态的设备会造成大量不必要的用电损耗。
5.3、加装应急系统需要额外建设,同时应急系统工作次数低,大量应急用电池组利用率低造成设备闲置损耗,增加建设成本。
6.4、在充放电过程中,储能系统会产生大量的热量,传统的光储系统通常采用空调和风扇等主动散热方式进行温控,但这种方法存在能耗高、维护成本高、无法根据环境温湿度自动调节等问题。因此,需要寻找一种更加智能、高效的温控技术方案,以提高光储充备系统的节能性能和可靠性。
技术实现要素:
7.本发明的目的在于:为了解决上述的问题,而提出的一种光储充备的运行管理系统。
8.为了实现上述目的,本发明采用了如下技术方案:
9.一种光储充备的运行管理系统,包括:光伏发电模块、控制系统、能源管理系统,所述能源管理系统包括能源管理模块、共享电池、电量监测模块、储能模块、应急备用模块、并网模块;所述储能模块包括储能变流器、环境控制装置、存储电池组;
10.环境控制装置,用于对储能系统内部的温湿度进行调控;
11.控制系统,具有远程控制功能,可以通过网络实现远程控制控制系统具有根据环境温湿度和天气预报实现环境温湿度调节功能,能够根据环境温湿度调整储能系统内部的温湿度条件,能够根据天气修改储能系统夜间储电量,保障第二天用电需求和降低能耗;
12.能源管理模块,所述能源管理模块用于分析与管理用电数据和各模块充放电情况,预估各时段负荷使用情况,包括用电时段和用电量,所述能源管理模块收集各功能模块情况进行数据处理,再将控制指令通过通讯协议发送至对应的功能模块,所述能源管理模块根据用电数据情况能够控制各功能模块工作状态,合理分配各模块工作时间,通过控制待机降低系统整体功耗;
13.共享电池组,所述共享电池组与电量监测模块、储能模块、应急备用模块电气连
接,所述共享电池组与储能模块、应急备用模块中电池组并联;
14.电量监测模块,所述电量监测模块用于监测共享电池组的剩余容量,并将数据发送至能源管理模块进行数据处理,默认工作状态下,共享电池组参与储能模块充放电循环,当电量监测模块监测共享电池组剩余容量低于安全阈值时,共享电池组由储能连接模式转化为应急备用连接模式,在电价平谷时段通过应急备用模块进行充电蓄能,或利用光伏发电模块进行补充;
15.光伏发电模块,所述光伏发电模块用于在电力负荷使用市电的基础上,增加光伏发电功能;并将电能通过并网模块以电气方式传输至市电、储能模块、应急备用模块或共享电池组;
16.储能模块,所述储能模块用于在电价低谷期存储电能,在电价高峰期释放电能;所述储能模块包括储能变流器以及存储电池组;所述储能变流器输入端与并网母线以及存储电池组以电气方式连接;所述储能变流器输出端与并网母线以电气方式连接;
17.应急备用模块,所述应急备用模块用于电力系统故障或作为备用电源启用,在电力系统故障时,转入应急工作状态,保障应急设备供电需求;
18.并网模块,所述并网模块用于将市电电网传输的电能与光伏发电模块和储能模块输出的电能进行合并,传输至充电桩负荷用于为电动车充电。
19.作为上述技术方案的进一步描述:
20.所述能源管理模块的输入端与并网模块的输出端电性连接,所述能源管理模块的输出端分别与储能模块、交直流充电设备和应急备用模块的输入端电性连接,所述并网模块的输入端分别与光伏发电模块和储能模块的输出端电性连接,所述交直流充电设备的输出端与能源管理模块的输入端电性连接,所述储能模块的输出端与能源管理模块的输入端电性连接,所述应急备用模块的输出端与能源管理模块的输入端电性连接,所述储能模块和应急备用模块的均与共用电池组双向电性连接,所述共用电池组与电量监测模块双向电性连接,所述电量监测模块的输出端与能源管理模块的输入端电性连接,所述储能模块的输出端与并网模块的输入端电性连接,所述并网模块与市电双向电性连接。
21.作为上述技术方案的进一步描述:
22.所述环境控制装置与控制系统电性连接。
23.一种电子设备,包括存储器和处理器;
24.所述存储器,用于存储计算机程序;
25.所述处理器,用于当执行所述计算机程序时,实现所述一种光储充备的运行管理方法。
26.一种计算机可读存储介质,所述存储介质上存储有计算机程序,当所述计算机程序被处理器执行时,实现所述一种光储充备的运行管理方法。
27.综上所述,由于采用了上述技术方案,本发明的有益效果是:
28.本发明中,通过设置能源管理模块根据历史用电情况预估各单位工作启停时间,合理安排待机,降低整体运行功耗,同时能够根据电量监测模块收集共享电池组剩余容量,自动切换充放电模式,在保障储能利用效率的同时保障应急工作安全;设置光伏发电模块提供光伏发电功能,与市电进行并网同时作为用电系统整体的补充;设置储能模块为充电桩充电提供削峰填谷,减少了对大功率充电对电网的冲击;设置应急备用模块在外部市电
异常波动火灾故障中断时,启动应急措施,保障用户用电及人员财产的生命安全,通过温控调节,改善了光储充备的散热效率。
附图说明
29.图1示出了根据本发明实施例提供的系统工作流程结构示意图;
30.图2示出了根据本发明实施例提供的系统结构示意图;
31.图3示出了根据本发明实施例提供的一种电子设备结构示意图。
具体实施方式
32.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
33.请参阅图1-3,本发明提供一种技术方案:一种光储充备的运行管理系统,包括:
34.包括:光伏发电模块、控制系统、能源管理系统,能源管理系统包括能源管理模块、共享电池、电量监测模块、储能模块、应急备用模块、并网模块;储能模块包括储能变流器、环境控制装置、存储电池组;
35.环境控制装置,用于对储能系统内部的温湿度进行调控;
36.控制系统,具有远程控制功能,可以通过网络实现远程控制控制系统具有根据环境温湿度和天气预报实现环境温湿度调节功能,能够根据环境温湿度调整储能系统内部的温湿度条件,能够根据天气修改储能系统夜间储电量,保障第二天用电需求和降低能耗;
37.能源管理模块,能源管理模块用于分析与管理用电数据和各模块充放电情况,预估各时段负荷使用情况,包括用电时段和用电量,能源管理模块收集各功能模块情况进行数据处理,再将控制指令通过通讯协议发送至对应的功能模块,能源管理模块根据用电数据情况能够控制各功能模块工作状态,合理分配各模块工作时间,通过控制待机降低系统整体功耗;
38.共享电池组,共享电池组与电量监测模块、储能模块、应急备用模块电气连接,共享电池组与储能模块、应急备用模块中电池组并联;
39.电量监测模块,电量监测模块用于监测共享电池组的剩余容量,并将数据发送至能源管理模块进行数据处理,默认工作状态下,共享电池组参与储能模块充放电循环,当电量监测模块监测共享电池组剩余容量低于安全阈值时,共享电池组由储能连接模式转化为应急备用连接模式,在电价平谷时段通过应急备用模块进行充电蓄能,或利用光伏发电模块进行补充;
40.光伏发电模块,光伏发电模块用于在电力负荷使用市电的基础上,增加光伏发电功能;并将电能通过并网模块以电气方式传输至市电、储能模块、应急备用模块或共享电池组;
41.储能模块,储能模块用于在电价低谷期存储电能,在电价高峰期释放电能;储能模块包括储能变流器以及存储电池组;储能变流器输入端与并网母线以及存储电池组以电气方式连接;储能变流器输出端与并网母线以电气方式连接;
42.应急备用模块,应急备用模块用于电力系统故障或作为备用电源启用,在电力系统故障时,转入应急工作状态,保障应急设备供电需求;
43.并网模块,并网模块用于将市电电网传输的电能与光伏发电模块和储能模块输出的电能进行合并,传输至充电桩负荷用于为电动车充电。
44.在本实施例中,如图1所示,包括以下步骤:
45.s101:能源管理模块获取交直流充电设备负荷历史的用电数据和各功能模块充放电情况,预估各时段负荷使用情况,包括用电时段和用电量,将每日划分为若干时间段;将时间段数量标记为n;将每个时间段标记为n;能源管理模块实时接收电量监测模块的反馈数据,电量监测模块主要用于实时监测储能模块中存储电池组的剩余电能,电量监测模块将存储电池组剩余的电量标记为r;并将剩余电量r发送至能源管理模块,能源管理模块根据需要进行应急备用模块以及光伏发电模块的调用启动;应急备用模块主要用于在交直流充电设备负荷遭遇突发状况时,紧急供电;
46.s102:能源管理模块根据当日是否为工作日或节假日情况,计算每个时间段内交直流充电设备负荷的用电量平均值;能源管理模块将日期标记为i,则in代表第i天的第n个时间段;将第i天第n个时间段内预估的用电量标记为pin,之后能源管理模块将预估的用电量pin发送至储能模块,能源管理模块预先根据实际市电负荷情况预设储能模块的电量阈值e,在时间段n内,若预估的用电量pin小于电量阈值e,则将储能模块设置为储能状态,储能模块输入端从并网模块中获取市电电能存储于存储电池组中;否则,将储能模块设置为释能状态,并将电能通过储能模块输出端释放至并网模块;
47.其中,并网模块主要用于将市电电网传输的电能与光伏发电模块和储能模块输出的电能进行合并,传输至交直流充电设备负荷用于为电动车充电;在储能模块为储能状态时,输送电能至储能模块;在储能模块为释能状态时,接收储能模块释放的电能,并将电能与市电和光伏发电合并传输至交直流充电设备负荷;
48.s103:能源管理模块预先根据实际经验设置存储电池组电量阈值t,在交直流充电设备遭遇突发状况时,能源管理模块启动应急备用模块,同时将储能模块设置为释能状态,并实时监测突发状况是否被解决;若未被解决,电量监测模块实时监测存储电池组的剩余电量r,当剩余电量r小于电量阈值t时,启动应急逆变器;应急逆变器工作时联动区域内的消防和安防系统工作,保障消防应急疏散和安防监控系统的正常运转,同时也维持区域内基础用电设备需要,保障交直流交直流充电设备的基础操作和停车管理系统的工作。
49.具体的,如图2所示,能源管理模块的输入端与并网模块的输出端电性连接,能源管理模块的输出端分别与储能模块、交直流充电设备和应急备用模块的输入端电性连接,并网模块的输入端分别与光伏发电模块和储能模块的输出端电性连接,交直流充电设备的输出端与能源管理模块的输入端电性连接,储能模块的输出端与能源管理模块的输入端电性连接,应急备用模块的输出端与能源管理模块的输入端电性连接,储能模块和应急备用模块的均与共用电池组双向电性连接,共用电池组与电量监测模块双向电性连接,电量监测模块的输出端与能源管理模块的输入端电性连接,储能模块的输出端与并网模块的输入端电性连接,并网模块与市电双向电性连接。
50.具体的,如图1所示,应急逆变器用于将直流电转换成交流电;环境控制装置与控制系统电性连接。
51.请参阅图3,一种电子设备,包括存储器和处理器;
52.存储器,用于存储计算机程序;
53.处理器,用于当执行计算机程序时,实现一种光储充备的运行管理方法。
54.一种计算机可读存储介质,存储介质上存储有计算机程序,当计算机程序被处理器执行时,实现一种光储充备的运行管理方法。
55.以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。